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ABSTRACT 

We consider the approximation of a differential operator on forms by combi- 

natorial objects via the correspondences of Whitney and de Rham. We prove 

that  the Hilbert space dual of the combinatorial coboundary is an L 2 approx- 

imation to the codifferential of one-forms on a two-dimensional Riemannian 

manifold. 

1. W h i t n e y ' s  inner  p r o d u c t  in cochain spaces: The de tLham cohomology 

of a smooth compact manifold M is identified with the simplicial cohomology 

of a triangulation through integration of forms over images of simplices. This 

procedure to associate a cochain with each differential form is now known as de 

Rham's mapping [4, par. 21]. 

Whitney [9] has constructed a partial inverse to this mapping using barycentric 
coordinates. If pp denotes the barycentric coordinate with respect to a vertex p in 
a triangulation (lip is a continuous piecewise linear but nondifferentiable function 
on the manifold, supported by the star of p), then the Whitney mapping has the 

following effect on a q-simplex ~0, . . .  ,pC]: 

q 

W[p0,.. .  ,pq] = q! ~-~(-1)Jppj dpp0 A. . .  A d/2pj A. . .  A dpp, 
j=0 

where ^ over a symbol means deletion. This defines W completely by linear 

extension. If R denotes de Rham's mapping, then we have R W  = id on the 

finite-dimensional linear space of q-cochains in the triangulation. 
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Now suppose M is equipped with a Riemannian metric. Then there is a 

natural definition of a finite measure space carried by the Borel a-algebra of M, 

and a natural Laplace operator on smooth functions. The volume measure on 

M together with the metric on each fibre of AqT*M make the set of sections of 

this bundle into an inner product space by 

(to, ~b) := fM(W, ~b)pdV(p). 

The completion of this inner product space is denoted L2AqT*M. 
The Hodge Laplacian of a differential form is the generalization of the Lapla- 

cian obtained as the unbounded L2-operator d'd+ dd*, where d is the usual al- 

ternating differential (e.g. [4, §4]) and duality is taken in the sense of L2AqT*M. 
Dodziuk and Patodi [5][6] used the mappings R and W to obtain combinatorial 

approximations to the Hodge Laplacian on forms. For a given triangulation r 

of M they consider the combinatorial coboundary dr associated with r .  dr is a 

linear operator on cochains; its effect on a q-simplex [P0,... ,Pq] is 

,Pq] = ~--~'p[P, P0, . . .  ,Pq] dr[p0,. . .  

where p runs over the set of all vertices of ~" such that  [p, p0, . . .  ,pq] is a (q + 1)- 

simplex of r .  

Whitney's  mapping W is injective and thus defines an inner product on the 

space of q-cochains of r by 

(ca,c~) := [ (Wc~, Wc2)rdV(p). 
J M  

Eckmann remarked [7] that  any inner product in cochain spaces gives rise to a 

combinatorial Hodge theory, provided the coboundary is defined as the Hilbert 

space dual of the boundary. We prefer to follow the convention of [5] and define 

the "boundary" d* as the 12 dual of the combinatorial coboundary. This has no 

topological consequences in the ease of a compact manifold. 

We now quote some results from [5]. 

2. PROPOSITION: The Whitney mapping commutes with the differential, i.e., 

dWc = Wdrc for every cochain c. 

Here the differential of We should be taken on the interior of the (n - 1)- 

skeleton, and then interpreted as being almost everywhere defined. Proposition 2 

says that  W is a map of complexes. 
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3. THEOREM: Let f be a C °° q-form on M. There exists a constant Cf such 

that 

sup If(P) - WRf(p)I  < C I sup diam a. 
pEM aEK 

Here K is the simpliciai complex of the triangulation r. It follows from the above 

two results that Wd~Rf  is a uniform approximation to dr. 

4. Subdiv is ion  of  a t r iangula t ion:  The results of Dodziuk and Patodi can 
be applied to obtain arbitrarily dose combinatorial approximations of the dif- 

ferential of a form, if one has an iterative procedure of subdividing a simplicial 

complex K such that the maximum diameters of the simplices become small 

enough but angles remain bounded away from zero. Whitney [9] has described 
such a method for complexes of arbitrary dimension. For two-dimensional com- 

plexes, Albeverio and Zegarlinski [1] describe a simpler method, which they call 

the regular  s t a n d a r d  subdivis ion.  It consists of cutting edges in half, and 
dividing each triangle in four smaller ones with the same shape as the original 
o n e .  

It was kindly suggested by an anonymous referee that the subdivision scheme 

of [3] may be hdpful for generalizing the result of the present paper to higher 

dimensions and higher rank forms. 

Dodziuk and Patodi also.claim that d~. is not a good approximation to d*, 

giving a counter example for one-forms in R z [6, appendix 2]. It turns out that 

their example is not valid because of an illegal use of duality, neglecting boundary 

terms when they are not negligible. In fact, the present paper aims to show 

5. THEOREM: Let r : K ~ M be a triangulation of a compact two-dimensioned 

RAemanrdan manifold M by a finite simplicied complex K. Suppose v is regular 

in the sense that on each 2-simplex a of K, v is a C °o mapping with respect 

to barycentric coordinates, the derivatives of which extend continuously to the 
boundary of [a[. 

Let f 6 FA1T*M be a smooth one-form. Let S'~r : SnK ~ M denote the 

n-th regular standard subdivision of r with corresponding operators Wn, Rn and 

dn. Then Wnd* R n f  converges to d* f in L2(M, dV). 

d* is called the d ivergence  o p e r a t o r  on forms. 

Dodziuk was considering this approximation to prove convergence of the eigen- 

values of the combinatorial Laplacian d*dn + dnd~ to those of the Hodge Lapla- 

cian. He and Patodi proved this in [6]. All these were partial results to- 

wards the solution of the Ray-Singer conjecture on the equality of analytic and 
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Reidemeister-Franz torsion. The latter problem and its solution are treated in 

[2] [s]. 
We shall first prove a result similar to Theorem 5 for fiat R 2. The same 

techniques apply to flat tori and cylinders. The proof of Theorem 5 is given as 

a separate section but relies heavily on the fiat case. 

We shall prove Theorem 5 in four steps. The first step will treat the special 

ease of Dodziuk's and Patodi's counter example. As a preliminary we isolate a 

technical lemma on matrix invertibility. 

6.  DEFINITION: Let g be an index set and let M be a g x g matrix. By 
~D(M) we denote the diagonal part of M, and Af(M) = M - •(M). 

We say that M is dominated by its diagonal if it has nonnegative entries and 

if for all v E V: 

(1) M(v, v) > Z M(v, w). 
w~v 

Condition (1)is equivalent to the requirement that the sum of the entries in the 

v-th row in 2)(M)-I.M(M) be less than or equal to 1. 

7. LEMMA: Let V be an index set and let M be a V x V matrix which 

is dominated by its diagonal / f  for some odd n, the diagonal of the matrix 

0 "  = CD(M)-IAf(M))" is bounded away from zero, then M is invertible, and 

the inverse is given by 

(2) M -1 = (1 - O + Oz - . . .  + On-l)(  1 + Qn)-,I)(M)-I" 

Proof." If M is dominated by its diagonal, then so is 2)(M)-IM. Moreover, 

{ / ) ( / ) (M)-~M) = 1, 

Af(7)(M)-~M) = 2)(M)- 'Af(M) = Q. 

Therefore, it is no restriction to suppose ~D(M) = 1, which we do implicitly from 

here until the end of the proof. 

All the matrices we are considering have nonnegative entries only; hence their 

norm as/°°-operators can be measured by application to the constant function 1. 

Since M is dominated by its diagonal, Q is a contraction, and so are Qn and 
N(Q"). 

In fact, the no,m of Af(Q") is strictly less than 1 since 2)(Q") is bounded away 

from zero by hypothesis. Suppose 2)(Q n) > e > 0 and put P = (Qn - e ) / ( 1  +e).  

Then 1 + Q" is invertible, its inverse being given by the geometric series 

(l+Qn)-1= 1 
l + e (  1 _ p + p 2  . . . .  ). 
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For odd n we have 

1 + Q" = (1 + Q)(1 - Q + Q 2  . . . .  _[_ Q,,-1). 

Therefore M itself is invertible, and its inverse is given by (2). [] 

Next we give a graph theoretical interpretation of this lemma. We consider 

an unoriented graph as an ordered pair G = (V, E) where V is a collection of 

vertices, and E a collection of edges, i.e., pairs in V. The adjacency matriz A of 

G is the symmetric V x V-matrix having entry 1 in position (v, w) if v # w and 

{v, w} E E,  0 in all other cases. 

8. COROLLARY: Let k E N and let G = (V, E)  be an unoriented graph where 

each vertex has at most k neighbours. I f  there are n, R E N such that each vertex 

in V is less than R steps away from a cycle of odd length at most n, and ff  we 

write A for the adjacency matrix of G, then k + A is invertible and the inverse 

is a bounded operator in IP(V), 1 < p < co. 

Proof: The j - t h  power of A has the following interpretation: (AJ),,w is the 

number of paths of length j from v to w, where the convention is that  a path 

may run along the same edge several times. Suppose n is odd (otherwise replace 

it by n + 1). 

The (2R+n) - th  power of A has entries larger than or equal to 1 everywhere on 

the diagonal, by the hypothesis on cycles. Now apply Lemma 7 with M = k + A. 

IP-boundedness follows from (2) and from the fact that  ~D(M) -1 = 1/k. [] 

In order to treat piecewise afllne triangulations of the plane, we need formulae 

for the scalar product of cochains in dimensions 0 and 1. 

9. LEMMA: Let r : K ~ R 2 be a regular triangulation of R 2 that is affine 

in every 2-simplex of K .  Consider R 2 as a Riemannian manifold with its stan- 

dard metric. Then the following rules hold for scalar products of cochadns in 

dimension O: 

(a) the square of the norm of any single vertex is one sixth of the surface area 

of its star, 

(b) the scalar product of adjacent edges is one twelfth of the surface area of 

their stars' intersection, 

(c) a l /o ther  padrs of vertices are orthogonal. 

Proof: The simplices of K can be considered subsets of R 2. Then all three claims 

follow directly from the fact that  W(pr, o) = Pr,,o, the barycentric coordinate of 

prl$* [] 
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I0 .  DEFINITION: Consider three independent points ao, al and a2 in R 2 with 
coordinates (z0, Y0), (xl ,  Yl) and (x2, Y2), respectively. The triangulation gen- 
erated by (ao, a~, a2) is constructed as follows. The vertices are {Pr, o; r , s  E Z}, 

where Pr,, = ao + r(al - ao) + s(a2 - ao). 

The 1-simplices are 

A~,, = [P,,,,P,+ a,,]; B~,, = [P,,,,P~,,+x]; C~,, = [P,,,+I,p~+I,o]. 

The 2-simplices are the triangles thus obtained, with an arbitrary but  fixed 

orientation. 
The triangulation mapping is the canonical embedding of each simplex. 
The surface area of the triangles is equal to half the absolute value of 

11. LENMA: The scalar products of 1-simplices in the triangulation generated 

by the points ao (x0, yo ), a~ ( x l , yl ) and a2( x2 , y2 ) follow ~om the formulae below 
after permutation of the indices. 

1 

IA~,,I 2 = 6~i ((=o - x2) 2 ÷ (xo - x2)(x, - x2) + (x, - x2) 2 

+ (yo - ~/~)2 + (yo - ~)(~i - ~/~) + (y~ - ~/~)~), 

1 

(A.,., C r , . )  = ~2--~1 ( (x0  - x~)2  _ (~1 - ~ 2 ) ( ~ ,  - ~ 0 )  

(3 )  + (yo - ~2)~ - ( y ,  - ~ ) ( y ,  - ~ o ) )  

Proof: This follows directly from the definition of the Whitney mapping, v 

We are now ready to treat the flat case of Theorem 5. 

12. PROPOSITION: Consider for each natural number n the triangulation of 
R2 generated by (0, 0), (0, ~) and ( ~, O) as in Dennition 10. We denote by IV,, 

Rn and d~ respectively the Whitney and de Rham mappings and the dual of the 

coboundary in our triangulation. Let f E A1R 2 be irn~nitely differentiable with 

compact support. Then Wnd*Rnf  converges urdform/y to 6 f  as n --* c~. 

Proof.." The form f can be written as ~(x, y)dx + ¢(x, y)dy. By xy-symmetry of 
our particular triangulation, it is sufficient to prove the claim in the special case 

¢=0. 
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We maintain the notations p~,,, A~,, ,  B~,,  and  Cr, o from Definition 10. Then 

/(~+1)/,, S)dx  ' (R . f ) (A . ,o )  = J~=,/,, qo(z, 

(Rnf)(Br,s)  = O, 
f l l .  r s + 1 

(R,,f)(C~,s) = Jt=o ~ ( n  + t, --n - t)dt. 

For the triangulation we are considering, a = 1In 2. From Lemma 9 we get 

(a) the squared norm of a vertex is 1/2n 2, 

(b) the scalar product of adjacent vertices is 1/12n 2, 

(c) other pairs of vertices are orthogonal. 

For the 1-simplices Lemma 11 gives 

(a) the squared norm of 1-simplices Ar, s and Br,s is 2/3, 

(b) the squared norm of 1-simplices Cr, s is 1/3, 

(c) the scalar product of Ar, s with B~,~ is 1/6, 
(d) the scalar product of Ar, s with B~+I,s-1 is 1/6, 

(e) all other pairs of 1-simplices are orthogonal. 

The description of the effect of d* on R n f  is somewhat more complicated. 

Since it is the dual of dn, we have for each 1-simplex S and each vertex Pr, s 

( d~ S, p~,, ) = ( S, d,p~,o ) 

(4)  = (S,  A,--1,o - A,.,. + B,- , . -1 - B,-,. + C,--1,s - C,- ,s-x) .  

The 0-cochain d~,S can be written as a (possibly infinite) linear combination of 

vertices p i j .  We interpret (4) as an infinite system of linear equations, indexed 
by (r, s) E Z 2, in the unknown coefficients of the linear combination. In matrix 
form this reads 

(5) M d  = k. 

Remember that the system has Z 2 unknowns, so the columns d and k have Z 2 
elements, and M is a Z 2 × Z2-matrix ! 

We observe some properties of the linear system (5). First of all, the column 

vector k on the right hand side has nonzero elements only in a finite number 

of positions (r ,s) .  Next, the infinite matrix M by which the unknowns are 

multiplied, is symmetric and has only finitely many nonzero elements in each 

row/column; in fact, its element in position ((i, j ) ,  (r, s ) )  is 

1 1 
M(i,D(r,s ) = (Pi,j,Pr, s) = ~-n2 Id(ij)(r,,) + 1-~n2A(i,j)(r,s) 
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where A is the adjacency matrix of the infinite planar graph corresponding to 

the 1-skeleton of the triangulation. A(ij)(r,s) = 1 if Pns and pi j  are neighbours, 

zero otherwise. 

This planar graph has the property that each vertex is part of a cycle of 
length three and has exactly six neighbours. It follows from Corollary 8 that M 

is invertible, and the inverse, when considered as an operator in/°°(Z2), is given 

by a norm convergent geometric series. On rescanning the proof of Lemma 7, it 

appears that the series can take the following form. 

( A A2) 18 p2 
M - '  = 2 n  2 1-~--t--~-~ x T ~ ( 1 - P +  - . . . )  

where P is convolution by a function on Z 2 that: 

is nowhere negative; 

is finitely supported; 

has integral 17/19. 
The matrix P is obtained by subtracting from A a its diagonal element 1/18, 

and then dividing the result by 19/18. 
The next step in our calculation consists of writing down the column vector 

k, since that is what we have to multiply by M -1 to get the unknown d. Since 

R . f  is zero on all of the B.,~, we only need to consider the cases S = C.,~ and 

S = A.,~. 
If S = C.,~, then the right hand side of (4) is 

1/3 if(u,v) = ( r -  1,s); 
- 1 / 3  if(u,v) = ( r , s -  1); 

0 otherwise. 

If S = Au,,, then the right hand side of (4) is 

5/6 i f(u,v)  = ( r -  1,s); 

- 5 / 6  i f ( u , v ) = ( r , s ) ;  

1/6 if (u, v) = (r, s - 1); 

- 1 / 6  if(u,v)  = ( r -  1,s + 1); 

0 otherwise. 

From this it follows that we can write d*R.f as 

(6) 2. (i - A/6 + A /36)(I + A /216)-'k 
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where 

d* Finally, W. nRnf is the piecewise linear extension of the above expression (6) 
to the whole of R 2. 

Now let e > 0 be given, we shall find an no E N such that, for n _> no, 
I I W . d * R . f  - d*f l l~  < e. First choose k such that 

)" 19 e ~llPll < 
k,=k 811V~lloo 

(the matrix between brackets is Af(Aa)). The expression kr,, in (7) is 

3Jt=o t ° ( r n l + t ' - - t ) - i ° ( n + t ' - - t  n dt 

~o( ~ - 1  + t ,  s )_~ , (~  s 
+ g~,=o ~ ~ n + t , n  dt 

1 rW.r  r t s - 1  r - l + t , s +  n 1)]dt 
+g J,=0 [ ~ ( ; + ,  . )-~(. 

1 [ /" r /  0~ r s t)] dt + O(-~g) 

5 ' /n[( &p)(r_ s ] 1 
+ - -  [ - ~  + t, + o ( ~ )  6n J,=o n n) dt 

1 [1/.  r 
+--6n Jt=o [ ( ~ - 2 - ~ y  ~ )  (~ +t ,  s)]  dt+O(-~)  

l O ~ . r  s 1 - ,,~ ~ ( g ,  ~-) + o(~). 

The effect of A/6 and 19P/17 is to average a function over close neighbours of 
a vertex in the graph. Thus, for example, application of A/6 to k, evaluated 
at (r,s), yields -1/n  2 times a weighted average of O~o/Ox over seven points 
in the rectangle ((r 4-1)In, (s 4- 1)In). If k' < k, then 19P/17 is an average 
over neighbours not further away than 3k edges. It follows from the infinite 
differentiability of ~o that 

II(~p)19 k' a~ax ~ II~ = o ( k / n ) .  
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Similarly, 

2n2(1-A /6+A2136)x"~  Z (_p)k '  1. . .}  = - z x 2 ~ x  1 - (  )k +O(k2/n).  
k'=0 

But d*(~o(z, y)dz) = - ~ .  The original claim then foUows by making k large 

and choosing n so large that  O(k2/n) < ~/3. n 

We now generalize the above result to triangulations of R 2 which are affine 

transformations of the one treated before. 

1 3 .  PROPOSITION: Let ao(xo,Yo), al(xl,Yl) and a z ( x 2 , 2 )  be independent 
points in R 2 and consider for every na tu ra /number  n the triangulation of R 2 

generated by ao, ao + (al - ao)/n and ao + (a2 - ao)/n. We denote by W, ,  R. 
and d~, respectively the Whitney and de P.ham mappings and the dual of the 
coboundary in this triangulation. Let f E A1R 2 be infinitely differentiable with 

compact support. Then W, ,d*Rnf  converges tmiform/y to d* f as n ~ w.  

Proof." Again, we assume for simplicity f = ~0(z, y)dz and we use the notations 

Pr, s, Ar, s etc. Let (Xr,,, Yr, s) be the coordinates of Pr, s. This time the effect of 

de Rham's mapping is given by 

1 

(R,J)(A,.,) = (~ - ~o) / 
t=0 

1 

(R.f)(Br,,) = (x2 - ~o) f 
t=0 

1 

(Rj)(Cr,.) = (x2 - xl) / 
t----0 

qO(Xr, s + t(x2 - xo),Yr, s + t(y2 - yo))dt, 

~(Xr,, + z2 - Zo + t(xa - x2), 

Yr, o + Y2 - Y0 + t(ya - y2))dt. 

Formula (4) is still valid, and the inversion problem for M is nearly the same as 

before, after replacing the factor 1/2n 2 by 1 /2an  2 wherever appropriate. This 

follows from Lemma 9. 

The column k which has to be multiplied on the left by M -1 is slightly more 
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complicated. 

( s )  

( R f ,  dp,.,.) = Rf (A , . -1 , s  - A~,o)(IAr,.I 2 + (Ar, . ,B, . , . )  + (Ar, , ,C,- , . ) )  

+ R. f (Br , , -1  - B,,,)(IB,,012 + (Ar.o,Br, , )  - (Br , , ,C~, , ) )  

+ M ( c . - 1 , ,  - c . , , -a ) ( IC. , , I  2 + (A.,o, C. , . )  - (n . , . ,  o . , . ) )  

+ n. f (A~, ,_ l  - Ar- , , .+~)( (A~, , ,  B~,,) - (A~,o, Cr, .))  

+ ny(nr_~, .  - B~+,,._,)((A~,., B~,.) + (n~,., Cr,.)) 

+ Ry (c~_ , , . _~  - C~,.)((A~,o, C~,,) + (Br, o, C~,.)). 

Denote by O(2 -kn) any term converging to zero at least as quickly as 2 -kn as 

n ---* oo. The symbol ~ will be used hereafter for equality op to O(2-an). From 

the infinite differentiability of qa it follows that  

(9)  

R f (  Ar- l ,o  - Ar,~) "~ (xl  - xo ) - ( x l  - XO )~x  - (Yl - Yo )-ff'~y , 

( o~ o~) 
R / (  B r , , - 1  - B r , , )  ~ (x~ - ~o ) -(~ - ~o ) ~  - (y~ - yo ) ~  , 

( °') 
R y ( C r - I , s  - C r , $ - l )  ~ (Xl - x2)  - ( X l  - x2)~-~  - (Yl - y2)~yy  , 

R y ( a ~ , , _ a  - A ~ _ ~ , , + ~ )  ~ (Zl - zo)  (zo + z~ - 2z2)b-~z + (yo + yl - 2U2) U / '  

R y ( B , - 1 , , - B , + I , , - 1 ) , , , ( z 2 - z o )  ( x o + z z - 2 x l ) - f f ~ z + ( y o + Y 2 - 2 y l )  , 

( a, o,) 
n y ( c ~ _ , , o _ ,  - c ~ , , )  ~ (~ ,  - ~ )  (e~o - ~ ,  - ~ ) ~  + (2yo - yi  - y ~ ) ~  , 

where the partial derivatives are understood to be evaluated at Pr,,- A lengthy 

but straightforward computation using Lemma 11 then yields 

d* 0qa ( n R n f ,  pr, s) = -a-~x(p , . , , )  + 0(2-3") .  

Application of M -1 is the same as in Proposition 12, with n 2 replaced by n2a.  
The convergence follows. [] 

The third step is to treat more general triangulations of flat R 2. We shall still 

suppose that  the triangulation is locally finite and that  the individual triangles 

have surface area bounded below. 
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14. PROPOSITION: Let r be a locally finite, piecewise linear triangulation of 
the plane. Suppose the 2-simpnces of r are mapped to triangles having surface 
area bounded from below. Denoting by Wn, Rn and d* respective2y the Whitney 

and de Rham mappings and the dual of the combinatorial eoboundary in the 

n-th regular standard subdivision of r, then for every smooth one-form f with 

compact support the following hold: 

(i) On compact subsets of the interior of triangles for r, the functions Wnd~Rnf 
converge uniformly to d* f as n ~ oo; 

(ii) Wnd* R . f  is uniformly bounded in n. 

In particular, 

Wnd:Rn f  --* d*f in L2(R2). 

Proof." (i) After a few iterations of the subdivision, the interiors of the original 

triangles are tiled like any part of the plane in Proposition 13, except that the 

value of a is not everywhere the same (but bounded below by hypothesis). It 

follows that on these interiors 

(lO) (d~,R,f,p) = -aOqo/Ox(p) + 0(a2-2") .  

Furthermore the matrix M of vertex scalar products is dominated by its diagonal: 

the inverse can be computed by a power series as in Lemma 9. 

We want to verify convergence on (compact subsets K of) the interior of the 
original triangles. The inverse M -1 corrects for a in (10) as follows. Up to a 
term O(1), M -1 is a norm convergent sum of matrices giving local weighted 

averages (with sum of the weights a - l ) .  If we cut the infinite sum after the 

k-th term where the tail is sufficiently small, and then perform the subdivision 

sufficiently often (n times), then on K the combinatorial d~ turns out to be a 
uniform (strong) approximation of the differential operator d*. 

(ii) Now consider the 'boundary' points, i.e., points of the 1-skeleton of the 

original triangulation r. 

First suppose p is a vertex of r. Number the 1-simplices belonging to the 

star of p as A1,. . .  , An in counterclockwise order, and let Aj be oriented such 

that p appears with a plus sign in the boundary of A 1. Call B 1 the 1-simplex 

connecting the other endpoints of Aj and Aj+I, where the convention is to apply 

modulo n arithmetic on indices j .  For a fixed orthonormal coordinate system of 

the plane centered at p, let (xj, yj) be the coordinates of the other endpoint of 

A 1. Let a I be twice the oriented surface area of the triangle formed by Aj, A/+I 

and B i. 
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Then it follows from the definition of the Whitney mapping and the scalar 
product of cochains that 

n 

(d 'R / ,p )  = (R/ ,  ~ Aj) 
jffil 

= ~ R/(Aj)IAj  is + (iW)(Aj-~)(A#, A#_~) + R/(A~+~)(Aj, A#+I) 
j----1 

+ Rf(Bj_,)(.4~, Bj_,) + Rf(Bj)(.4~, B~) 

+ Rf(A~÷~) [(x~ - ~+1 ) ( ~  - ~j+~ ) + (~  - ~+1 ) ( ~  - ~+~)1 

+ ~ I ( B ~ )  [ ( ~  - ~ + l ) ( ~ j  + ~ + ~ )  + (u~ - ~+~)(u~ + u~+~)l} 

Note that under n-fold regular standard subdivision, all coordinates are divided 
by the same power of two. 

If, in the above expression, we replace f by its linear approximation (first order 
Taylor series) near p, then the error will be 0(2 -3n) for the n-th regular standard 
subdivision of the triangulation. Furthermore, by linearity it is no restriction to 
suppose that 

f = (~o ~- ~:c + ~2y)d:c + second order terms. 

Substituting the linear approximation gives 

(d 'Rf ,  p) ~ ~ {[~0xj + ~OlX~/2 + 7~2xjyj] 
j=l 

× [(xj - x i+ l ) (~ i  - 2~+1)  + (yj - uj+l)(yj - 2uj+,)l 

+ [~0zi+l + ~x~+1/2 + ~2zi+lUi+l] 

X [(Xj -- X j+l )(2Xj -- X j+l) 3 k (~j -- Yj+I)(2~j -- Yj+I)] 

+ [~O(Xj÷I  --  X j )  "~ qOl(X2.t., - -  Xj2")/2 + ~ 2 ( X j ÷ I ~ / j ÷ I  - -  ~ j ~ j ) ]  

X [(Xj - -  X j ÷ I ) ( X j  "Jr X j ÷ I )  "~ (~/j - -  Yj÷I ) (~ / j  "~ ~ / j÷ l ) ]}  • 

We treat the homogeneous parts separately. Terms of the form ~0x 3 vanish for 
each j separately. Terms ~0x!t 2 yield 

n n 
yj - yj+~ 

= _ -  (yj 6a,  [ -3y,+lx,  -1- 3y, z,+l] ~ j - - ~ l -  ~tj+.) ---- O. 
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It follows that d~R,f, and therefore W,d~,R.f, is uniformly essentially bounded 

in a neighbourhood of p. Since the points which lie ultimately in the 0-skeleton 

of an iterated regular subdivision of r are dense in R 2, Wnd~Rnf is uniformly 

bounded on compact subsets of R 2. Remember that f has compact support, and 

that the matrix M in section 12 had a bounded inverse in l°°: therefore W,d*R,f 
is uniformly bounded in all of R 2, even near the skeleton of the triangulation r. 

[] 

15. Proof of Theorem 5: It suffices to prove that the sequence converges uni- 

formly on compact subsets of the interior of the original, unrefined triangulation, 

and is uniformly bounded near every point of M. 

Let p be an interior point. Choose local orthonormal coordinates originating 

at p that are an affine transformation of the barycentric coordinates everywhere 

else in the 2-simplex to which p belongs. Without restriction suppose that in 

these coordinates f(x, y) = ~(x, y)dx. 
Regular subdivisions of r near p have the familiar periodic graph structure 

from Propositions 12 and 13. Thus (8) holds. The approximation (9) is equally 

valid, provided the symbol ,-~ is interpreted as equality up to terms of order 

O(2 -a") as before. 
The scalar products of vertices and edges, however, cannot be computed ex- 

actly anymore. They are approximately equal to the values from Lemmas 9 

and 11, where the order of approximation is 0 ( 2 - " )  for [A[ 2 and (A, C), and 
0(2 -3") for [p[2 and (p, q). 

It follows that near p, i.e., for vertices pr, s at most a fixed number of 1-simplices 

away from p in the 1-skeleton of the triangulation 

d* ( . a . f , p . , . )  = + 0(2-3").  

The finite square matrix of scalar products (p, q) of vertices has entries of order 

O(2 -2") that are given, up to order O(2-3n), by the formulae 

1 
[q[2 ~ 6 × total  surface area of St(q), the star of q, 

1 
(p, q) ,~ ~-~ x surface area of St(p) f3 St(q). 

For sufficiently large n the inversion procedure of lemma 7 can be applied to 

obtain that d~R,f(pr,,) is close to an average of - 0 ~ / 0 x  over a small neigh- 

bourhood of Pr, s. Since W, is the piecewise linear extension operator (that is, 
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functions in its range are linear in barycentric coordinates on the interior of every 

triangle), we have again that  W n d * R n f  "* f uniformly in a neighbourhood of p. 

Similarly, if p is an arbitrary point of M, an argument as in Proposition 14 

produces a neighbourhood of p on which W n d * R n f  is uniformly bounded in n. 
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